Lens injury stimulates axon regeneration in the mature rat optic nerve.
نویسندگان
چکیده
In mature mammals, retinal ganglion cells (RGCs) are unable to regenerate their axons after optic nerve injury, and they soon undergo apoptotic cell death. However, a small puncture wound to the lens enhances RGC survival and enables these cells to regenerate their axons into the normally inhibitory environment of the optic nerve. Even when the optic nerve is intact, lens injury stimulates macrophage infiltration into the eye, Müller cell activation, and increased GAP-43 expression in ganglion cells across the entire retina. In contrast, axotomy, either alone or combined with intraocular injections that do not infringe on the lens, causes only a minimal change in GAP-43 expression in RGCs and a minimal activation of the other cell types. Combining nerve injury with lens puncture leads to an eightfold increase in RGC survival and a 100-fold increase in the number of axons regenerating beyond the crush site. Macrophage activation appears to play a key role, because intraocular injections of Zymosan, a yeast cell wall preparation, stimulated monocytes in the absence of lens injury and induced RGCs to regenerate their axons into the distal optic nerve.
منابع مشابه
Neural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study
Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...
متن کاملSwitching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation.
The inability of mature CNS neurons to regenerate injured axons has been attributed to a loss of inherent growth potential of cells and to inhibitory signals associated with myelin and the glial scar. The present study investigated two complementary issues: (1) whether mature CNS neurons can be stimulated to alter their gene expression profile and switch into a strong growth state; and (2) whet...
متن کاملTaxol facilitates axon regeneration in the mature CNS.
Mature retinal ganglion cells (RGCs) cannot normally regenerate axons into the injured optic nerve but can do so after lens injury. Astrocyte-derived ciliary neurotrophic factor and leukemia inhibitory factor have been identified as essential key factors mediating this effect. However, the outcome of this regeneration is still limited by inhibitors associated with the CNS myelin and the glial s...
متن کاملSynergistic action of brain-derived neurotrophic factor and lens injury promotes retinal ganglion cell survival, but leads to optic nerve dystrophy in vivo.
Trauma or disease in the CNS often leads to neuronal death and consequent loss of functional connections. The idea has been put forward that strategies aimed at repairing the injured CNS involve stimulation of both neuronal survival and axon regeneration. We tested this hypothesis in the adult rat retinocollicular system by combining two strategies: (i) exogenous administration of brain-derived...
متن کاملLens Injury Has a Protective Effect on Photoreceptors in the RCS Rat
Lens injury induced activation of retinal glia, and subsequent release of ciliary neurotrophic factor (CNTF) and leukaemia inhibitory factor (LIF) potently protect axotomised retinal ganglion cells from apoptosis and promotes axon regeneration in the injured optic nerve. The goal of the current study was to investigate if similar effects may also be applicable to rescue photoreceptors from dege...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 12 شماره
صفحات -
تاریخ انتشار 2000